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Frequency responses and their sensitivities have been broadly applied to "nite element
model updating, structural damage detection, dynamic optimization, vibration control and
so on. In this paper, the modal acceleration method for the frequency responses and the
double-modal acceleration method for their sensitivities, which have been discussed in the
previous paper for undamped systems, are extended to viscously damped systems. The two
methods are based on the hybrid expansion, power series expansion and modal
superposition, of the inverse of the complex dynamic system matrix. Three steps are required
to calculate the sensitivities using the proposed method. Firstly, frequency responses of
a system excited by external forces are calculated by using the modal acceleration.
Pseudo-force vector is then computed from the production of the sensitivity matrix and the
frequency response vector. Finally, a second modal acceleration is applied to obtain the
general frequency responses under the pseudo-forces, that is, the sensitivities. Two modal
truncation schemes, middle-high-modal and low-high-modal truncation schemes, are
presented according to the values of the exciting frequencies. The modal truncation errors of
the modal acceleration method for frequency responses and the double-modal acceleration
method for the sensitivities are also given to show the convergence of the proposed methods.
Although the frequency responses and their sensitivities are discussed in this paper, the
proposed methods are also valid for the frequency response functions, responses in time
domain and their sensitivities. The results of a #oating raft isolation system show that the
proposed modal acceleration methods are e$cient, especially for the sensitivity analysis. The
modal truncation errors of the frequency responses and their sensitivities will reduce quickly
when the two-modal acceleration methods are adopted.
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1. INTRODUCTION

The sensitivities of dynamic properties with respect to selected structural parameters have
been applied to "nite element model updating, structural damage detection, dynamic
optimization, vibration control and so on. The sensitivities of eigenvalues and their
corresponding eigenvectors of a structure have been discussed in detail during the past 30
years. The results of such work are fruitful and almost conclusive. However, there seems to
be far less work being done directly on the frequency responses, which have even more
practical applications.

Generally, direct method and modal superposition method are used to calculate
frequency responses. The former is based on the direct frequency solution and results in an
exact calculation of frequency responses. The latter can be classi"ed into several
approaches: typical modal superposition [1], modi"ed modal superposition [1] and modal
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acceleration approaches [2, 3]. Three kinds of methods, direct approach [4, 5], modal
superposition approach [6, 7] and double-modal superposition approach, are usually used
to calculate the sensitivities of frequency responses. In 1993, Ting [8] proposed an improved
method for calculating the sensitivities of frequency responses. It combines the modal
acceleration method with the Ritz minimization technique to improve the modal
approximation accuracy. The advantages and disadvantages of these methods were
reviewed in detail by Qu [9].

Recently, a modal acceleration method for frequency responses and a double-modal
acceleration method for their sensitivities have been proposed by Qu [9]. It can be proved
that only the modes lie within the interested frequency range are required to calculate the
frequency responses and their sensitivities using these methods. Their accuracy increases
quickly with the increase of the number of the item in power series.

Unfortunately, almost all the aforementioned approaches were proposed for undamped
systems. Although some of them, in reference [2] for example, can be used to proportionally
damped systems, they are not convergent for most cases. As one knows, the viscously
damping is very important for some systems, especially for vibration isolation systems and
active vibration control systems. The frequency responses and their sensitivities, other than
eigen sensitivities, are much more useful for the dynamic design of such systems due to their
better properties [10].

In this paper, the modal acceleration method and the double-modal acceleration method
[9] are extended to viscously damped systems. The modal superposition method for
frequency responses and the double-modal superposition method for their sensitivities are
presented in section 3. According to the exciting frequency, two modal truncation schemes,
middle}high-modal and low}high-modal, are proposed. The corresponding modal
truncation errors of the frequency responses and their sensitivities are also given in this part.

Based on the power series expansion and modal superposition of the inverse of the complex
dynamic system matrix, a modal acceleration method and a double-modal acceleration
method for frequency responses and their sensitivities in the low-frequency range are derived
in section 4. Only the modes whose corresponding frequencies lie in the range of the exciting
frequencies are required to calculate the frequency responses and their sensitivities. The modal
truncation errors are also provided in this part for comparison purpose.

Sometimes, the interested frequencies do not lie in the low-frequency range of a system or
structure. Floating raft isolation system [10] is a good example. Usually, the vibration
frequencies of the main and auxiliary machines in a ship or submarine lie in the range
1000}6000 rad/s. The frequencies of the structural vibration are higher than this. However,
the lowest frequency of the isolation system, such as #oating rafting isolation, is usually
much smaller than these frequencies. This means the exciting frequencies lie in the middle
frequency range of the isolation system. When we design or optimize this kind of isolation
system, the vibration transmissibility, which is a function of the frequency responses, in that
frequency range is required. If we use all the modes within the low- and middle-frequency
range to calculate the frequency responses and their sensitivities, the number of the kept
modes will be very large. This is a heavy burden for the eigensolution analysis. If only the
modes which lie in the interested frequency range are selected, the modal truncation error is
usually very large, especially for the sensitivities. Based on the eigenvalue shifting technique,
the modal acceleration method for frequency responses and the double-modal acceleration
method for their sensitivities are derived in section 5.

A #oating raft isolation system for ships and submarines is included in section 6 to
demonstrate the e$ciency of the proposed methods. The results will show that the modal
truncation errors of the frequency responses and their sensitivities reduce quickly when the
two-modal acceleration methods are adopted.



VISCOUSLY DAMPED SYSTEMS 371
2. THEORETICAL BACKGROUND

The dynamic equations of an n-degree-of-freedom (d.o.f.) viscously damped system in
frequency domain can be written in matrix form as

xK(p)#juC (p)!u2M(p)yX(p, u)"F (u), (1)

where M(p), C(p) and K(p) are mass, damping and sti!ness matrices respectively. They are
the functions of design parameter vector

p"Mp
1
, p

2
,2, p

m
NT. (2)

For simplicity, this indication will be omitted in the following. X(p, u) and F(u) are the
displacement and exciting force vectors respectively. u is an exciting frequency and

j"J!1. Because the viscous damping matrix is not proportional to the sti!ness and/or
mass matrices, the dynamic equations (1) are di$cult to be uncoupled in physical space. It is
necessary to introduce 2n-dimensional state space, i.e.,

Y(u)"G
X(u)

juX (u)H . (3)

Hence, the dynamic equations (1) can be rewritten in the state space as

(A!juB)Y(u)"F
S
(u), (4)

where

A"C
K

0

0

!MD , B"C
!C

!M

!M

0 D , F
S
(u)"G

F (u)

0 H . (5)

The frequency responses can be obtained from equation (4) as

Y(u)"(A!juB)~1F
S
(u). (6)

Equation (6) is the governing equation of frequency responses of viscously damped systems
in state space.

The sensitivities of the frequency responses can be obtained by taking the "rst partial
derivative of equation (4) with respect to a selected design variable p

j
( j"1, 2,2 , m), that

is,

(A!juB)
LY (u)

Lp
j

"R(u), (7)

where pseudo-force vector R(u) is de"ned as

R(u)"S (u)Y (u) (8)

and the sensitivity matrix is

S(u)"!

LA

Lp
j

#ju
LB

Lp
j

. (9)
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Hence, the sensitivities of frequency responses are

LY(u)

Lp
j

"(A!juB)~1R(u). (10)

Equation (10) is the governing equation of the sensitivities of frequency responses in state
space.

3. MODAL SUPERPOSITION METHOD AND DOUBLE-MODAL
SUPERPOSITION METHOD

Assume that the eigenvalue and eigenvector matrices of the viscously damped system are
X3 and W3 . According to the theory of the complex modal, they can be expressed in submatrix
form as

W3 "C
W

WX
W*

W*X*D , X3 "C
X
0

0

X*D , (11)

where the superscript && * '' denotes complex conjugation. The eigenvalue and eigenvector
matrices should satisfy the following eigenequation and orthogonal conditions:

AW3 "BW3 X3 , W3 TAW3 "X3 , (12, 13)

W3 TBW3 "I, W3 T (A!juB)W3 "X3 !juI, (14, 15)

where I is an identity matrix of 2n]2n. From equations (13) and (15) one obtains

A~1"W3 X3 ~1W3 T, (A!juB)~1"W3 (X3 !juI)~1W3 T. (16, 17)

3.1. MODAL SUPERPOSITION METHOD FOR FREQUENCY RESPONSES

Introducing equation (17) into equation (6), one has

Y(u)"W3 (X3 !juI)~1W3 TF
S
(u), (18)

Assuming

W3 "[tI
1
tI
2
2tI

n
tI *
1

tI *
2
2tI *

n
], (19)

the frequency responses in state space, which are expressed in modal parameters in equation
(18), can be expanded in complex modal space as

Y(u)"
n
+
r/1

tI T
r
F
S
(u)

j
r
!ju

tI
r
#

n
+
r/1

(tI *
r
)TF

S
(u)

j*
r
!ju

tI
r
. (20)

According to the de"nition of Y(u) and F
S
(u) in equations (3) and (5), respectively, the

frequency responses in physical space are

X(u)"
n
+
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tT
r
F(u)

j
r
!ju
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#
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+
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(t*
r
)TF (u)

j*
r
!ju

t*
r
, (21)
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where, t
r
and t*

r
are the rth vectors of matrices W and W* respectively. They also are the

upper-half parts of vectors tI
r
and tI *

r
, j

r
and j*

r
are the rth diagonal elements of matrices

X and X* respectively.
The exciting frequencies can be classi"ed into three categories compared with the natural

frequencies of the system. (1) The excited frequencies are all very low and the largest one is
still less than the lowest natural frequency of the system. For this case, the calculation of the
frequency responses and their sensitivities is very simple and will not be discussed in the
following. (2) The exciting frequencies are low and lie in the low-frequency range of the
system. (3) The exciting frequencies are a little high and lie in the middle-frequency range.
According to the division, the modal truncation can be divided into middle}high-modal
and low}high-modal truncation schemes.

In the middle}high-modal truncation approach, the middle and high modes of the system
are truncated. Hence, only the modes in the low-frequency range are applied to calculate the
frequency responses and their sensitivities. Suppose that the low ¸ groups of modes are
selected when the modal superposition is applied, the frequency responses in state space are

Xl
1
(u)"

L
+
r/1
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r
F(u)
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!ju

t
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#

L
+
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)TF (u)
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r
. (22)

When the exciting frequencies lie in the middle-frequency range of the system, the number
of the kept modes will be very large if equation (22) is still used to calculate the frequency
responses. This makes it di$cult to solve the eigenproblem (12). Hence, the low}high-modal
truncation approach is applied. If the ¸

1
th through ¸

2
th groups of modes are selected as the

kept modes, the frequency responses can be expressed as
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+
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r
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r
!ju
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r
. (23)

The modal truncation errors of frequency responses resulted from equations (22) and (23)
are

El
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The superscript l and m in equations (22)}(25) denote the frequency responses in the low-
and middle-frequency range respectively. The subscript 1 in these equations denotes the
results obtained from the modal superposition.

3.2. DOUBLE-MODAL SUPERPOSITION METHOD FOR THE SENSITIVITIES

Substituting equation (17) into equation (10) yields

LY(u)

Lp
j

"W3 (X3 !juI)~1W3 TR(u). (26)

For the double-modal superposition method, three steps are required to calculate the
sensitivities of frequency responses. (i) Compute the frequency responses of the system
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under external forces. (ii) Calculate the pseudo-force vector R(u) by using equation (8).
(iii) After substituting R(u) into equation (26), the sensitivities are obtained by
a second-modal superposition, i.e.,

LY(u)

Lp
j

"

n
+
r/1

tI T
r
R(u)

j
r
!ju
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#
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According to the de"nition of Y(u), tI
r
and tI *

r
, the sensitivities of frequency responses in

physical space are
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When the middle}high-modal and the low}high-modal truncation schemes are applied, the
sensitivities expressed in equation (28) can be written as
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(30)
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where Xl
1
(u) and Xm

1
(u) are de"ned by equations (22) and (23). The modal truncation errors

of the sensitivities resulting from equations (29) and (30) are
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Obviously, the errors of the sensitivities of frequency responses are composed of two parts.
One results from the truncation errors of frequency responses, which is expressed by the "rst
part of equations (31) and (32). The other results from the modal truncation when
calculating the sensitivities, which is denoted by the residual part in the two equations.
Usually, the modal truncation errors of the sensitivities are larger than the frequency
responses because the modal truncation schemes are applied twice for the double-modal
superposition method. Hence, it is necessary to introduce the modal acceleration method
and double-modal acceleration method.

4. FREQUENCY RESPONSES AND THEIR SENSITIVITIES IN
THE LOW-FREQUENCY RANGE

4.1. MODAL ACCELERATION METHOD FOR FREQUENCY RESPONSES

It can be proven that the inverse of matrix (X3 !juI) in equation (17) can be expanded in
power series as [10]

(X3 !juI)~1"X3 ~1
H
+
h/0

( juX3 ~1)h#( juX3 ~1)H`1(X3 !juI)~1, (34)

where H is any integer that is larger than !1. H"!1 indicates that no power series is
adopted. Substituting equation (34) into equation (18), the frequency responses in state
space can be expressed as

Y(u)"Y
A
(u)#Y

S
(u), (35)

where Y
A
(u) and Y

S
(u) denote the frequency responses de"ned by the summation of the

former H#1 items and by the residue of the power series respectively. They are

Y
A
(u)"W3 X3 ~1

H
+
h/0

( juX3 ~1)hW3 TF
S
(u), (36)

Y
S
(u)"W3 ( juX3 ~1)H`1(X3 !juI)~1W3 TF

S
(u). (37)

The frequency responses Y(u) are divided into two parts, Y
A
(u) and Y

S
(u), only because the

two parts are associated with the modal acceleration and modal superposition respectively.
It can be seen from equation (36) that the frequency responses Y

A
(u) are expressed using

modal parameters of the system. However, almost all the high eigenvalues and eigenvectors
are usually not available for a large and/or complex system. Hence, it is necessary to rewrite
them by using physical parameters of the system. By considering equation (16), we have

A~1( juBA~1)h"W3 X3 ~1W3 T (BW3 juX3 ~1W3 T)2 (BW3 juX3 ~1W3 T )
hggggggiggggggj

h

. (38)

Equation (38) can be simpli"ed by using equation (14) as

A~1 ( juBA~1)h"W3 X3 ~1( juX3 ~1)hW3 T. (39)

Introducing equation (39) into equation (36) yields

Y
A
(u)"A~1

H
+
h/0

( juBA~1)hF
S
(u). (40)
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Obviously, the parameters on the right-hand side of equation (40) are all known in
advances.

The frequency responses Y
S
(u) de"ned by the residue of the power series can be expanded

in complex modal space as

Y
S
(u)"

n
+
r/1
A
ju
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r
B
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Relatively, the frequency responses in physical space are
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Substituting equations (40) and (41) into the right-hand side of equation (35) and
considering equations (3) and (42), the frequency responses in physical space are obtained as
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where subscript &&;'' denotes the upper part of the vector. Assuming the low ¸ groups of
modes are selected as the kept modes when the modal truncation is adopted, the frequency
responses in physical space can be expressed as
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The modal truncation errors resulting from equation (44) are
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The subscript 2 in equations (44) and (45) denotes the results obtained from the modal
acceleration method.

4.2. DOUBLE-MODAL ACCELERATION METHOD FOR THE SENSITIVITIES

After frequency responses are obtained, they can be used to calculate their sensitivities.
Introducing equation (34) into equation (26), one has

LY(u)

Lp
j

"A
LY(u)

Lp
j
B
A

#A
LY(u)

Lp
j
B
S
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A
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Based on the same derivative procedure of equation (43), we have
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Equation (49) can be rewritten in physical space as
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When the low ¸ groups of modes are chosen as the kept modes, the sensitivities of
frequency responses in physical space are obtained by the double-modal acceleration
method as
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Similarly, three steps are required to calculate the sensitivities of frequency responses by
using the double-modal acceleration method. (i) The frequency response of the system
under exciting forces are computed by using the modal acceleration method in equation
(44). (ii) Pseudo-force vector Rl

2
(u) is calculated by using the second equation of equation

(51). (iii) Rl
2
(u) is substituted into the "rst equation of equation (51), and then the

sensitivities are obtained by a second-modal acceleration.
The truncation errors resulting from equation (51) are
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The errors of the sensitivities are composed of two parts. This is similar to the structure of
equation (31). One results from the truncation errors of frequency responses calculated
using equation (44) and is expressed by the former two parts of equation (52). The other
results from modal truncation when calculating the sensitivities themselves and is denoted
by the third part of equation (52).

Equation (45) has a coe$cient compared with equation (24). In order that the truncation
errors of frequency responses obtained from equation (44) reduce with the increase of the
items H of the power series, the inequalities

K
ju
j
r
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ju
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r
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should be satis"ed for the truncated modes. Considering
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(55)

one has

u2
max

(u2
L`1

, (56)

where m
r
and u

r
are the rth modal damping and frequency of the system. u

max
is the highest

frequency of the exciting frequencies. Usually, one or two more modes are selected to make
the convergence faster. Obviously, when condition (54) or (56) is satis"ed, the modal
acceleration method can make the approximate frequency responses Xl

2
(u) very close to the

exact X(u), which leads to DEl
2
(u) D @DXl

2
(u) D. Similarly, when condition (54) is satis"ed the

errors of the sensitivities of frequency responses are convergent too. Hence, inequality (54)
or (56) is the convergent condition of the frequency responses and their sensitivities.

5. FREQUENCY RESPONSES AND THEIR SENSITIVITIES IN THE
MIDDLE-FREQUENCY RANGE

5.1. MODEL ACCELERATION METHOD FOR FREQUENCY RESPONSES

Considering the eigenvalue shifting technique, we have

(A!juB)"(A1 !juN B), (57)

where

A1 "A!jqB, uN "u!q. (58)

Usually, the eigenvalue shifting q is

q"
u

max
#u

min
2

. (59)

u
min

and u
max

are the under and upper boundary values of the exciting frequencies.
Substituting equation (57) into equation (6), the frequency responses become

Y(u)"(A1 !juB1 )~1F
S
(u). (60)
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When the modal acceleration method is applied, the frequency responses can be expressed
as
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Suppose that the ¸
1
th through ¸

2
th modes are selected as the kept modes when the modal

truncation is applied, the frequency responses in the middle-frequency range are
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The errors resulting from equation (62) are
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5.2. DOUBLE-MODAL ACCELERATION METHOD FOR THE SENSITIVITIES

Introducing equation (57) into equation (10) yields
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Based on the same derivation above, one has
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When the modal truncation is applied, the sensitivities are
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The errors resulting from equation (66) are
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In order that the frequency responses and their sensitivities obtained from the modal
acceleration method and the double-modal acceleration method are more accurate than
those from the typical modal superposition method and that the truncation errors decrease
with the increase of the items H of the power series, the selected ¸

1
and ¸

2
should satisfy
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that is
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When the damping ratio is small, the following inequalities can be derived from inequalities
(70) approximately:

u
L2`1

'u
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, u
L1~1

(u
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. (71)

Inequalities (69) or (71) are the governing inequalities of ¸
1

and ¸
2
. It means that the

frequencies corresponding to the truncated modes should lie outside of the exciting
frequency range. Usually, one or two more modes are selected to make the convergence
faster. When inequalities (69) or (71) are satis"ed, the truncation errors of the sensitivities
decrease with the increase of H.

6. NUMERICAL EXAMPLE

Floating raft isolation system, which has been developed during the past 20 years, is an
e$cient equipment for vibration isolation and noise reduction [10]. It can e!ectively isolate
the vibrations of the host and auxiliary machines and reduce the structural noise of ships
and submarines. Floating raft isolation system will protect the equipment in ships or



Figure 1. Schematic of #oating raft isolation system.

Figure 2. (a) Finite element model of the raft frame; (b) "nite element model of the base.
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submarines from damage and let them work normally when the ships or submarines are
subjected to external loads or shocks. Floating raft isolation system is a compound dynamic
system. It contains springs, dampers, machines to be isolated, raft frame and base.

The schematic of a #oating raft isolation system is shown in Figure 1: m
1
"100 kg and

m
2
"120 kg denote the machines which are to be isolated. A and B are rectangular plates

and denote the raft frame and base respectively. The length}width}thickness of them are
12 m}0)8 m}0.02 m and 2)8 m} 0)8 m}0)04 m respectively. Their modulus of
elasticity"2)0E11 N/m2, mass density"7800 kg/m3. The two short sides of plate B are
simply supported and two long sides are free. The four sides of plate A are all free.
k
1
"1)0E5 N/m, k

2
"5)0E5 N/m, c

1
"200 n s/m2, c"400 n s/m2.

The "nite element model of the raft frame is shown in Figure 2(a). The model has 24
rectangular elements, 35 nodes and 105 d.o.f. The nodes which are connected with spring
and damper I, k

1
and c

1
, are 17 and 19. The nodes those are connected with spring and

damper II are 1, 3, 5, 7, 15, 17, 19, 21, 29, 31, 33 and 35. The "nite element model of the base
is shown in Figure 2(b). The model has 14 rectangular elements, 24 nodes and 72 d.o.f. The
nodes those are connected with spring and damper II are 7, 12, 13, 18, 8, 11, 14, 17, 9, 10, 15
and 16. The isolation system has a total of 179 d.o.f. The former 48 complex frequencies of
the full model are listed in Table 1.

6.1. FREQUENCY RESPONSES

Assume that an identity force is acted on m
1
in the z direction. The frequency range of the

force is 0}500 rad/s. It lies in the low-frequency range of the structure. According to the
frequencies of the exciting forces and equation (56), ¸"9 is selected. This means that all the
modes which are higher than the 9th are truncated when the middle-high-modal truncation
scheme is adopted. The frequency responses at node 10 of the base in the z direction for
various H are calculated and drawn in Figure 3(a). For convenience, only the amplitudes are
considered here and in the following. The errors of these approximate frequency responses



TABLE 1

Former 48 complex frequencies of the system in Figure 1 (rad/s)

Mode Frequency Mode Frequency Mode Frequency Mode Frequency

1 !0)668763$j27)4761 13 !50)3217$j1052)66 25 !6)43327$j2571)18 37 !33)9316$j4292)75
2 !0)908139$j30)7180 14 !51)6692$j1124)83 26 !37)2371$j2599)01 38 !93)2515$j4367)52
3 !0)643143$j67)4590 15 !2)44333$j1244)83 27 !5)28205$j2831)25 39 !1)67897$j4370)59
4 !19)5565$j227)402 16 !6)81218$j1264)11 28 !19)5478$j2917)43 40 !48)7835$j4686)78
5 !13)0252$j227)648 17 !39)9179$j1278)33 29 !8)61524$j2961)48 41 !0)000000$j4875)89
6 !13)5133$j239)506 18 !72)0624$j1482)56 30 !57)5689$j3116)79 42 !105)467$j4944)46
7 !14)9352$j334)254 19 !5)11117$j1858)42 31 !116)931$j3118)04 43 !6)37971$j5187)60
8 !25)8998$j416)102 20 !66)5287$j1869)18 32 !47)0278$j3204)45 44 !12)2187$j5503)62
9 !36)0185$j534)619 21 !3)54278$j1956)76 33 !9)59058$j3406)84 45 !37)8496$j5798)07

10 !32)9596$j542)768 22 !67)7733$j2120)51 34 !8)16363$j3586)46 46 !2)74991$j5838)25
11 !4)52826$j697)487 23 !17)9071$j2245)33 35 !67)1672$j3887)99 47 !42)2488$j5883)27
12 !12)0737$j782)115 24 !12)1321$j2513)00 36 !0)00000$j4196)49 48 !110)980$j5980)82
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Figure 3. Frequency responses and their errors in the low-frequency range for di!erent H's. (a) Frequency
responses for di!erent H's:** exact; - - - - - H"!1; ) ) ) ) ) ) H"0; } ) } ) } ) } H"2; (b) Errors of the frequency
responses for di!erent H's: ** H"!1; - - - - - H"0; ) ) ) ) ) ) H"2.
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are shown in Figure 3(b). The Error is de"ned as

Error"D (x
appro

!x
exact

)/x
exact

D (72)

where x
appro

and x
exact

denote the approximate and exact frequency responses or sensitivities
respectively. In the two "gures. H"!1 denotes the frequency responses obtained from
equation (22).

The accuracy of frequency responses obtained from equation (22) is low especially when
the exciting frequency closes to 500 rad/s. The largest percent error ("100Error%), for
example, is 44)85%. After the modal acceleration method is applied, the accuracy increases
quickly. For the cases of H"0 and 2, the largest percent errors are 5)48 and 2)04%
respectively. The accuracy of the frequency responses for the lower frequencies increases
more quickly than those for the higher frequencies. This can be seen from Figure 3(b).

Suppose the frequency range of the exciting forces is 4000}5000 rad/s. It lies in the
middle-frequency range of the isolation system. According to the frequencies of the exciting
forces and equation (59), q"4500, ¸

1
"35 and ¸

2
"43 are selected. This means that the

former 34 modes and all the modes which are higher than the 43rd are truncated when the



Figure 4. Frequency responses and their errors in the middle-frequency range for di!erent H's. (a) Frequency
responses for di!erent H's:** exact; - - - - - H"!1; ) ) ) ) ) ) H"0; } )} ) } ) }H"2; } ) ) } ) ) }H"4. (b) Errors of
the frequency responses for di!erent H's: ** H"!1; - - - - - H"0; ) ) ) ) ) ) H"2; } ) } ) } ) } H"4.
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low-high-modal truncation scheme is adopted. The frequency responses at m
1

in the
z direction for various H are calculated and shown in Figures (4a). The errors of these
approximate frequency responses are shown in Figure 4(b). In the two "gures, H"!1
denotes the approximate frequency responses obtained from equation (23).

The accuracy of frequency responses obtained from equation (23) is very low. The largest
percent error, for example, is 103)2%. Obviously, these frequency responses are useless.
After the modal acceleration method is applied, the accuracy increases very quickly. The
percent errors at u"5000 rad/s for H"!1, 0, 2 and 4 are 65)14, 30)54, 9)97 and 3)01%
respectively. The accuracy of the frequency responses for middle frequencies increases much
more quickly than that for the lower and higher frequencies.

6.2. SENSITIVITIES OF FREQUENCY RESPONSES

Assume that the sti!ness of the spring I under m
1

is selected as the design parameter.
The sensitivities of the frequency responses discussed above are calculated and shown in
Figures 5(a) and 6(a). Their errors are shown in Figures 5(b) and 6(b). The accuracy of the



Figure 5. Sensitivities of frequency responses and their errors in the low-frequency range for di!erent H's.
(a) Sensitivities of frequency responses for di!erent H's:** exact; - - - - - H"!1; ) ) ) ) ) ) H"0; } ) } ) } ) } H"2.
(b) Errors of the sensitivities of frequency responses for di!erent H's: ** H"!1; - - - - - H"0; ) ) ) ) ) ) H"2.
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sensitivities obtained from the double-modal superposition method, i.e., equations (29) and
(30), is very low. It increases quickly if the double-modal acceleration method is applied.
When the former three items of the power series, that is H"2, are adopted, the errors are
reduced by hundreds of times. The errors for H"!1 in Figure 6(b) are almost equal to
1 because the absolute values of the sensitivities obtained from the modal superposition
method are much smaller than the exact, which can be seen clearly from Figure 6(a).

Comparing Figures 3(b) with 4(b), 5(b) with 6(b), one can "nd that the errors of frequency
responses and their sensitivities in the low-frequency range are much smaller than those
in the middle-frequency range. This means the modal acceleration method is much more
necessary for the frequency responses and their sensitivities in the middle-frequency
range than in the low-frequency range. For example, the sensitivities obtained from
the double-modal superposition method shown in Figure 6(a) are much smaller
than the exact. When the modal acceleration method is applied, the accuracy increases very
quickly.

It can be seen from Figures 3(b) and 5(b), 4(b) and 6(b) that if the same modes are selected
to calculate the frequency responses and their sensitivities, the accuracy of the former is
usually higher than the latter. This is because the modal truncation scheme is used once in



Figure 6. Sensitivities of frequency responses and their errors in the middle-frequency range for di!erent H's.
(a) Sensitivities of frequency responses for di!erent H's:** exact; - - - - - H"!1; ) ) ) ) ) ) H"0; } ) } ) } ) } H"2;
} ) ) } ) ) } H"4. (b) Errors of the sensitivities of frequency responses for di!erent H's:** H"!1; - - - - - H"0;
) ) ) ) ) ) H"2; } ) } ) } ) } H"4.
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the calculation of the former while it is twice for the latter. Hence, modal acceleration
method is much more useful for the sensitivity than for the frequency response.

One also can see from Figures 3(a), 4(a), 5(a), and 6(a) that only several items of the series,
such as 2 or 3, can make the frequency response and their sensitivities close to the exact
accurately.

7. CONCLUSIONS

Based on the hybrid expansion of the inverse of the complex dynamic system matrix, one
modal acceleration method for frequency responses and one double-modal acceleration
method for their sensitivities of viscously damped systems are derived respectively.
Two-modal truncation schemes are proposed. When the frequencies of exciting forces lie in
the low-frequency range of the system, the middle and high modes can be truncated by using
the present methods. When the exciting frequencies lie in the middle-frequency range, the
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high as well as the low modes can be truncated at the same time. The following conclusions
can be drawn from these methods:

(1) Theoretically, the natural frequencies corresponding to the truncated modes should
lie outside of the frequency range of the exciting forces when using the proposed
methods. However, one or two more modes are selected as the kept modes to improve
the convergence of the acceleration methods.

(2) The accuracy of frequency responses and their sensitivities obtained from the modal
superposition method and the double-modal superposition method are very low.
When two-modal acceleration methods are adopted, the modal truncation errors
reduce very quickly.

(3) If the same modes are adopted for calculating frequency responses and their
sensitivities, the accuracy of the former is usually higher than the latter because one
more modal truncation is applied for the latter. Hence, modal acceleration approach
is much more necessary for the latter than for the former.

(4) The modal truncation errors of the frequency responses and their sensitivities in the
low-frequency range are smaller than those in middle-frequency range when modal
truncation is applied. Hence, modal acceleration method is much more necessary for
the frequency responses in the middle-frequency range.

(5) Generally, highly accurate results can be obtained when several items of the power
series are adopted. Hence these methods are very e$cient for frequency responses and
their sensitivities, especially for the latter.

(6) The proposed methods are also valid for frequency response functions, responses in
time domain and their sensitivities.

(7) If one uses subspace iteration method to solve the complex eigenproblem in equation
(12) [11], the decomposition of matrix A or A1 is required in this method. Hence it is
unnecessary to decompose it again for the present methods. This makes the proposed
acceleration methods much more computationally e$cient.
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APPENDIX: NOMENCLATURE

0 (n]n) null matrix or zero vector
A" (2n]2n) system matrix in state space
A1 (2n]2n) modi"ed system matrix in state space de"ned in equation (58)
B (2n]2n) system matrix in state space
C (n]n) damping matrix in physical space
E (n) modal truncation error vector of frequency responses in physical space
E3 (2n) modal truncation error vector of frequency responses in state space
E1 (n) modal truncation error vector of the sensitivities of frequency responses in physical

space
F (n) external force vector in physical space
F
S

(2n) external force vector in state space
I (2n]2n) identity matrix
j J!1
K (n]n) sti!ness matrix in physical space
M (n]n) mass matrix in physical space
p (m) design parameter vector
q eigenvalue shifting
R (2n) pseudo-force vector in state space de"ned in equation (8)
S (2n]2n) sensitivity matrix in state space de"ned in equation (9)
X (n) frequency response vector in physical space
Y (2n) frequency response vector in state space
j complex frequency
u exciting frequency
uN exciting frequency with eigenvalue shifting de"ned in equation (58)
X3 (2n]2n) complex eigenvalue matrix in state space
X (n]n) submatrix of the complex eigenvalue matrix de"ned in equation (11)
W3 (2n]2n) complex eigenvector matrix in state space
W (n]n) submatrix of the complex eigenvector matrix de"ned in equation (11)
tI
l

(2n) the ith eigenvector
t
l

(n) up-half part of the ith eigenvector

Superscript
l in the low-frequency range
m in the middle-frequency range
¹ matrix transpose
* matrix complex conjugation

Subscript
r rth mode
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